Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Copper (Cu) interconnects are an increasingly important bottleneck in integrated circuits due to energy consumption and latency caused by the notable increase in Cu resistivity as dimensions decrease, primarily due to electron scattering at surfaces. Herein, the potential of a directional conductor, PtCoO2, which has a low bulk resistivity and a distinctive anisotropic structure that mitigates electron surface scattering is showcased. Thin films of PtCoO2of various thicknesses are synthesized by molecular beam epitaxy (MBE) coupled with a postdeposition annealing process and the superior quality of PtCoO2films is demonstrated by multiple characterization techniques. The thickness‐dependent resistivity curve illustrates that PtCoO2significantly outperforms effective Cu (Cu with TaN barriers) and Ru in resistivity below 20.0 nm with a more than 6x reduction compared to effective Cu below 6.0 nm, having a value of only 6.32 μΩ cm at 3.3 nm. It is determined that grain boundary scattering can still be improved for even lower resistivities in this material system through a combination of experiments and theoretical simulations. PtCoO2is therefore a highly promising alternative material for future interconnect technologies promising lower resistivities, better stability, and significant improvements in energy efficiency and latency for advanced integrated circuits.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Deploying complex machine learning models on resource-constrained devices is challenging due to limited computational power, memory, and model retrainability. To address these limitations, a hybrid system can be established by augmenting the local model with a server-side model, where samples are selectively deferred by a rejector and then sent to the server for processing. The hybrid system enables efficient use of computational resources while minimizing the overhead associated with server usage. The recently proposed Learning to Help (L2H) model proposed training a server model given a fixed local (client) model. This differs from the Learning to Defer (L2D) framework which trains the client for a fixed (expert) server. In both L2D and L2H, the training includes learning a rejector at the client to determine when to query the server. In this work, we extend the L2H model from binary to multi-class classification problems and demonstrate its applicability in a number of different scenarios of practical interest in which access to the server may be limited by cost, availability, or policy. We derive a stage-switching surrogate loss function that is differentiable, convex, and consistent with the Bayes rule corresponding to the 0-1 loss for the L2H model. Experiments show that our proposed methods offer an efficient and practical solution for multi-class classification in resource-constrained environments.more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            Interconnect materials play the critical role of routing energy and information in integrated circuits. However, established bulk conductors, such as copper, perform poorly when scaled down beyond 10 nm, limiting the scalability of logic devices. Here, a multi‐objective search is developed, combined with first‐principles calculations, to rapidly screen over 15,000 materials and discover new interconnect candidates. This approach simultaneously optimizes the bulk electronic conductivity, surface scattering time, and chemical stability using physically motivated surrogate properties accessible from materials databases. Promising local interconnects are identified that have the potential to outperform ruthenium, the current state‐of‐the‐art post‐Cu material, and also semi‐global interconnects with potentially large skin depths at the GHz operation frequency. The approach is validated on one of the identified candidates, CoPt, using both ab initio and experimental transport studies, showcasing its potential to supplant Ru and Cu for future local interconnects.more » « less
- 
            Free, publicly-accessible full text available November 20, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
